首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1789篇
  免费   244篇
  国内免费   42篇
电工技术   12篇
综合类   76篇
化学工业   956篇
金属工艺   9篇
机械仪表   19篇
建筑科学   10篇
矿业工程   6篇
能源动力   18篇
轻工业   200篇
水利工程   1篇
石油天然气   33篇
武器工业   1篇
无线电   172篇
一般工业技术   491篇
冶金工业   15篇
原子能技术   22篇
自动化技术   34篇
  2024年   20篇
  2023年   100篇
  2022年   63篇
  2021年   140篇
  2020年   106篇
  2019年   122篇
  2018年   80篇
  2017年   97篇
  2016年   74篇
  2015年   70篇
  2014年   82篇
  2013年   128篇
  2012年   147篇
  2011年   111篇
  2010年   87篇
  2009年   112篇
  2008年   71篇
  2007年   92篇
  2006年   98篇
  2005年   69篇
  2004年   49篇
  2003年   54篇
  2002年   32篇
  2001年   17篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1951年   1篇
排序方式: 共有2075条查询结果,搜索用时 15 毫秒
11.
Hydrogels for absorbing metal ions in wastewater have attracted more attentions in the environmental field especially for recent years. The removal efficiency of hydrogel adsorbents for eliminating metal ions is highly related with the effective contact between adsorbents and adsorbates. However, poor water absorption capacity of the hydrogel adsorbents would restrict on the expose of adsorption sites to the targeted subjects, causing undesirable removal ratio (RR) especially for metal ions at trace level. Thereby, the reported hydrogel adsorbents mainly focus on the removal of high content but not the trace level of metal ions so far. In this work, poly(acrylamide) (PAM)/poly(acrylic acid) (PAA)/Ca(OH)2 composite hydrogel is applied to adsorb trace metal ions. Swelling ratio of such PAM/PAA/Ca(OH)2 gel reaches 2,530 g/g, resulting in effective exposure of active sites and further expected RR for trace metal ions. The RRs of such adsorbent for Cu2+ (initial concentration C0 = 0.064 mg/L), Al3+ (C0 = 0.27 mg/L), Co2+ (C0 = 0.59 mg/L), Cr6+ (C0 = 0.52 mg/L), Mn2+ (C0 = 0.55 mg/L), Ni2+ (C0 = 0.59 mg/L), Zn2+ (C0 = 0.65 mg/L), Ag+ (C0 = 1.08 mg/L), and La3+ (C0 = 1.39 mg/L) are 56.6, 80.8, 41.3, 29.3, 34.6, 44.6, 55.9, 45.8, and 35.5%, respectively. This work broadens the application of hydrogel adsorbent for eliminating trace metal ions from polluted water.  相似文献   
12.
A novel molecularly imprinted two-dimensional (2-D) photonic crystal hydrogels (MIPH) for sensitive and label-free recognition of 2,4-dichlorophenol (2,4-DCP) was prepared. The 2-D photonic crystal template was fabricated by using air-water interface self-assembly method. And then the template was embedded with molecularly imprinted polymer, which was synthesized with 2,4-DCP as imprinted molecules, dimethyl sulfoxide as solvent, acrylic acid and acrylamide as functional monomers, N,N-methylene bis acrylamide as cross-linker, azobisisobutyronitrile as initiator. The imprinted molecules were removed by 0.01 M ammonia solution. The results indicated that the 2,4-DCP molecularly imprinted 2-D photonic crystal hydrogels has good response and recognition ability to 2,4-DCP. When the molar ratio of cross-linking density of MIPH is 2.3% and the molar ratio of imprinting molecule is 5.0%, the change of Debye ring diameter is the largest. The diameter of Debye ring increased by 7.1 mm when the concentration of 2,4-DCP changed from 0 to 1 × 10−6 M, and the particle spacing of MIPH reduced 38 nm. In addition, the diameter of the Debye ring hardly changed in the solution of analogues of 2,4-DCP such as, phenol, 2-chlorophenol, 2,4,6-trichlorophenol and so on, indicating that the MIPH has highly sensitivity and specificity.  相似文献   
13.
In this article, a hybrid system of hydrogel/frog egg-like microspheres (H-FMS) formed by the combination of coaxial electrostatic spraying and freeze-drying was introduced for enhancing wound healing efficiency through the sustained release of Rana chensinensis skin peptides (RCSPs). The porous PVA/gelatin hydrogel were obtained and frog egg-like microspheres (FMS) of sodium alginate (SA), shaping uniform and smooth, were embedded into hydrogel. Based on PVA/gelatin hydrogel, the FMS addition increased the water absorption of hydrogel to 1,105%. RCSPs were more effectively encapsulated into FMS than solid microspheres (MS). Not only does the H-FMS act as good “depots” for sustained release of RCSPs over 9 days, without exhibiting obvious burst release, but also show good biocompatibility in vitro. In vivo studies on wound healing as well as the histology of fibroblasts, re-epithelialization, inflammation, and hair follicles indicated that the structure of H-FMS released RCSPs continuously and promoted wound healing in rats significantly.  相似文献   
14.
In this paper, a new method combines chemical/physical crosslinking, and emulsification-foaming porogenic was adopted to prepare n-hydroxyapatite (n-HA)/polyvinyl alcohol (PVA)/chitosan (CS) porous composite hydrogel using artificial cornea scaffold materials. The fabricate conditions, including the type and amount of emulsification-foaming porogen, mixing time and speed etc. were researched. The results showed the optimal condition that the alkylphenol polyoxyethylene ether (OP) acted as emulsification-foaming porogen, with the ratio of WPVA/WOP as 3.75, and mixing 15 min with a stirring speed of 800 r·min-1. Additionally, the fabricated composite hydrogel scaffold materials possessed interconnected internal holes, a moisture content of above 65%, and tensile strength of above 6 MPa. In vitro cytotoxicity and acute systemic toxicity assay confirmed that the scaffolds did not show any cytotoxicity. The as-prepared hydrogel could be a promising candidate for artificial cornea scaffold material.  相似文献   
15.
A simple and novel method using gel shrinkage to indirectly characterize the structure of calcium alginate gel (CAG) beads during the calcium alginate gelation process was presented in this study. The effect of preparation process parameters (gelling cations, bead diameter, and alginate M w and concentration) on the structure of the CAG bead formation process was thoroughly investigated. It was found that (a) the concentration of the Na+ and Ca2+ ion in gel bath was found to be the determining factor in the gel structure formation process by regulating the dissociation of alginate and the complexation of the calcium; (b) Na+ acts as a competitor with calcium and a screen in the electrostatic repulsion; (c) the effect of beads size below 700 μm on the structure of CAG beads can be neglected; and (d) the sodium alginate concentration has no significant effect on the gel formation process. Furthermore, the diffusion of bovine serum albumin (BSA) was controlled by the density of CAG bead. Consequently, a faster diffusion rate of BSA within the looser structure of beads can be observed. These results are keys to understanding the behavior and performance of beads in their utilization medium. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48923.  相似文献   
16.
In this contribution, we reported the preparation of a novel conducting polymer hydrogel (CPH) by a sol-gel method, which was subsequently employed to fabricate a flexible all-solid-state supercapacitor device. Taking advantage of the synergistic effects of the different components in the conducting polymer hydrogel and the merits of the proposed synthesis strategies, the prepared supercapacitor device with CPH as electrode exhibited high area-normalized capacitance (2.2 F cm−2), high gravimetric capacitance (1573.6 F g−1) as well as high energy density of 0.18 mWh cm−2 (or 128.7 Wh Kg−1) at 0.08  mW cm−2 (or 55.1 W kg−1). This study did not only represent a novel all-solid-state, high performance, flexible supercapacitor with potential applications in flexible energy-related devices, but also developed a new method for enhancing capacitances and mechanical stability of all-solid-state flexible supercapacitor.  相似文献   
17.
Cell transplantation is one of the most promising strategies for the minimally invasive treatment of a raft of injuries and diseases. However, a standing challenge to its efficacy is poor cell survival due to a lack of mechanical protection during administration and an unsupportive milieu thereafter. In response, a shear‐injectable nanoscaffold vector is engineered considering the three equal requirements of protection, support, and survival. Here, the programmed peptide assembly of tissue‐specific epitopes presents a safe sanctuary microenvironment for the transplantation of cells. For the first time, a mechanistic understanding of the multifactorial role of the nanoscaffold in promoting cell survival is presented, where initial cell survival is dependent on the fluid mechanic process of droplet formation rather than on shear rate. However, provided is the first report of the most critical component of a transplantation vector, distinguishing feigned biological support from mechanical properties from true ongoing biological support post transplantation. This is achieved via the presentation of amino acid constituents that significantly improve the efficacy of the vector compared to a biocompatible, yet inert analogue. Together, the peptide‐programmed hydrogels enable fundamental rules for the engineering of advanced treatment strategies with wide reaching implications for tissue repair and biofabrication.  相似文献   
18.
For manufacturing parts of very soft materials by liquid deposition modeling (e.g., to mimic living soft tissues), formulations of 3D-printable polydimethylsiloxane have been developed, with the aim of increasing the yield stress of the liquid and reducing the final mechanical modulus. In the present work, suspensions of solid-like hydrogel particles, which are easily 3D-printable, are prepared in order to generate yield stress, and the suspended phase is removed after manufacturing by taking advantage of the thermo-reversibility of the hydrogel behavior, resulting in porosity, which reduces the final rigidity. The reported approach is even more efficient than a previous approach based on emulsion formulations.  相似文献   
19.
Photocatalysts have attracted great research interest owing to their excellent properties and potential for simultaneously addressing challenges related to energy needs and environmental pollution. Photocatalytic particles need to be in contact with their respective media to exhibit efficient photocatalytic performances. However, it is difficult to separate nanometer-sized photocatalytic materials from reaction media later, which may lead to secondary pollution and a poor recycling performance. Hydrogel photocatalysts with a three-dimensional (3D) network structures are promising support materials for photocatalysts based on features such as high specific surface areas and adsorption capacities and good environmental compatibility. In this review, hydrogel photocatalysts are classified into two different categories depending on their elemental composition and recent progresses in the methods for preparing hydrogel photocatalysts are summarized. Moreover, current applications of hydrogel photocatalysts in energy conversion and environmental remediation are reviewed. Furthermore, a comprehensive outlook and highlight future challenges in the development of hydrogel photocatalysts are presented.  相似文献   
20.
基坑工程对邻近地铁隧道影响的分析与对策   总被引:4,自引:0,他引:4  
上海市闸北区大宁商业中心基坑东侧围护体距离已运行地铁隧道的最小净距仅为5.45 m。本文主要介绍了该工程中为控制隧道变形采取的设计技术措施:盆式开挖配合钢管斜坡撑代替大面积支撑、地铁侧坑内被动区采用水泥土搅拌桩加固和遵循时空效应原理的设计开挖工况等。同时针对本工程设计以变形控制为主的特点,采用了三维连续介质有限元法分析了开挖所引起的环境效应,其中土体采用修正剑桥模型模拟。同时采取了不同计算方案对比分析了采用抽条开挖的有效性,为设计和施工提供了有益的参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号